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Earth Energy Resources

Primary Energy: All Comes from the Sun

Millions of years

oil

Month / years Biomass:
: Wood, vegetable oils,

alcohol

“Energy sustainability

requires conversion of
resources at the same rate

Wind ene 3t which they are naturally
replenished on earth

without externalities”

Solar Radiation

Solar heat,
solar electricity

Courtesy: BMW Group, 2000
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Earth Energy Resources

Primary Energy: All Comes from the Sun
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Cost of Solar Powe

r

 Good News! Solar PV costs are dramatically falling

$/watt Solar system costs, S per watt, United States, 2008-2014
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Cost of Solar/Wind Power

Photovoltaic Solar Resource of the United States

e Solar Cost Considerations

— ~20 % capacity factor — effectively
5-times the cost/kWh

— At S1-S2/W - S5,000-510,000/kW
for equivalent continuous generator

kWh/m?/Day
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e Location Considerations

— Need significant transmission
and distribution infrastructu~ Q

— Cost, aesthetics, legal

NREL, 2008
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Dynamics of Solar, Wind and other Renewables

* Together these will eventually
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Energy Storage Need

Gedankenexperiment — consider a completely solar world

Do as much conservation & efficiency as possible

— How much storage is needed?

World Total (Mtoe kWh/toe m

9,301 11,630 1.082E+14 108,171
Total Storage Needed Daily shifting only: 237
Seasonal shifting: 28,846

[Key World Statistics, IEA, 2015]
 Batteries needed, but,

Figure 1-7: Roundtrip Efficiency for Observed Projects (all non-residential)
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Electrolysis — A Flexible Load

e Electrolyzers (PEM, alkaline) produce hydrogen & oxygen from water
* Provide load when wind or solar would otherwise be curtailed
* Fast response allows for use with variable input (<2 sec)

* Fast response can provide other ancillary services (e.g., regulation,
Volt/VAR support)

e Sizes range from 10’s of KW to several MW (today)
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Hydrogen Energy Storage — CHBC White Paper

 HES Better for long-term energy storage
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Hydrogen Energy Storage Dynamics

e Compressed Hydrogen Storage complements Wind & Power

Demand Dynamics in Texas
1500
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* Load shifting from high wind days to low wind days

 Hydrogen stored in adjacent salt cavern

Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013
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Hydrogen Energy Storage Dynamics

 Weekly storage and seasonal storage possible with hydrogen and
fuel cells/electrolyzers — all zero emissions!

Weekly Seasonal
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But what can we do if we don’t have a salt cavern?

Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of
Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013
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“Natural” Storage & Transmission/Distribution Resource

* Natural Gas Transmission, Distribution & Storage System
. Southern California Gas Company Facilities
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“Natural” Storage & Transmission/Distribution Resour~

* Natural Gas Transmission, Distribution & Storage Syste~
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

e Hydrogen production dynamics (with and without clouds)

PV Only Power Dynamics 11/19/2015
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P2G Accomplishment: Hydrogen Pipeline Injection

H2 injection into existing natural gas infrastructure (low pressure)
* NG, H2/NG mixtures, H2 leak at same rate
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P2G Accomplishment: Hydrogen Leakage Assessment

H2 and H2/NG mixture leakage rates

* Test apparatus with fixed small orifice

Matural Gas, High Fressure, Run 1, 201 6-03-25
Matural Gas, High Pressure, Run 2, 201 6-03-28
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P2G Accomplishment: Leak Mitigation Evaluation

H2 injection into existing natural gas infrastructure (low pressure)

 Copper epoxy applied (Ace Duraflow®)
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P2G Accomplishment: Electrolysis Alternatives

Solid Oxide Electrolysis and Co-Electrolysis
 Comparison to PEMFC (lower activation losses, higher ohmic losses)

Electrolysis Efficiency Comparison
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P2G Accomplishment: Pipeline Materials Impacts

Simulation of H2 embrittlement and fatigue crack growth with UIUC

Fatigue crack growth in 6” SoCalGas pipeline

0.188” wall thickness: (h=0.188"=4.8 mm)
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P2G Accomplishment: UCI Microgrid Simulation

* P2G could significantly increase renewable percentage at UCI
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P2G Accomplishment: Large Electrolyzer Deployment

APEP/NFCRC .
— 6kW Electrolyzer

” First H, Pipeline Injection &%
I ;‘L - - it

J——
-

MacArthur

Thermal Storage Substation

4,500,000 Gal
60,000 Ton-Hour

Central Plant:
8 chillers
Gas turbine: 13.5 MW
Steam turbine: 5.5 MW

—
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P2G Accomplishment: Large Scale Electrolyzer

Injection and combustion of H2/NG mixture in NGCC (400 psi line)

© National Fuel Cell Research Center 2017



P2G Accomplishment: Large Scale Electrolyzer

Injection and combustion of H2/NG mixture in NGCC (400 psi line)

e ~0.24 volume % H2 in natural gas

© National Fuel Cell Research Center 2017



Power-to-Gas Economics

* Producing hydrogen from otherwise curtailed renewable power is
economically attractive

P2G Hydrogen Production Cost - Future
M Reference Cost

| : : : P2G Operating

$ 60/MWh

$30/MWh

Free Curt

S0 51 52 53 54 S5 56 57
5/GGE
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Power-to-Gas Economics — Various Pathways

Levelized Cost of Returned Energy (LCORE)
e Future Costs & Efficiencies
* 50% capacity factor for all equipment

Y,
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Thanks for
your attention!
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Backup Slides
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SoCalGas P2G Support & Collaboration @ UC Irvine

Major Actions and Accomplishments in 2015-16

1.
2.

9.
10. Economic analyses

Lab-scale H, production dynamics by direct-DC & AC PV electrolysis

Hydrogen injection into existing natural gas distribution system
infrastructure — leakage assessment

Evaluation of one customer-side leakage mitigation strategy
Evaluated alternative electrolysis technologies (PEME, SOE, REP)

Collaboration with SoCalGas to evaluate hydrogen and hydrogen
blend leakage rates

Simulation of pipeline materials impacts (embrittlement, fatigue)

Simulation of P2G impacts in e
. . . / 5’/"‘ “ : ;" ‘ ’

grid and microgrid 1% __________ k | §

Full-scale hydrogen production PR
T : : T i - =z Hydrogen [ji 5%

& injection into 400 psi line Storage |

Combustion of P2G gas in NGCC |gma - =

—
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

e Performs best when hot (summer vs. winter)
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P2G Accomplishment: Detailed Economic Analyses

Levelized Cost of Returned Energy (LCORE)

e Future Costs & Efficiencies

5 Li-ion Battery 60
3.Electricity 2.eGrid
4 Lead Acid Battery 44
37
3. PEM Electrolyzer
2.Methane
3
o 1 NG Dist. Grid 19
2. Solid Oxide Electrolyzer
17
1 Hydrogen
1. Alkaline Electrolyzer
9
|
Energy.Conversion. Technologies Energy.Form Destinati LCORE




P2G Accomplishment:

Detailed Economic Analyses

Levelized Cost of Returned Energy
(LCORE)

Pathways compared here:

* Electr. + Fuel Cell + Electricity to eGrid
e Electrolyzer + H2 to gas grid

* Electr. + Methanator + NG to gas grid
e Battery ES + Electricity to eGrid

—
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

e HOGEN-RE proton exchange membrane electrolyzer

* |nstalled, connected, evaluated with PV direct-DC and 220V AC
* Sunny and cloudy days

* Overall performance ﬁ

— Efficiency in various
operating modes

— BoP losses

— DCvs. AC

— Dynamics

 Hydrogen uses

(1) vented

(2) stored

(3) pipeline injected
(4) end-use consumed |,

—
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

e Balance of Plant loss dynamics (direct-PV mode)
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P2G Accomplishment: Electrolysis Alternatives

Reformer Electrolyzer Purifier (REP) concept of FuelCell Energy

Natural G
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P2G Accomplishment: Electrolysis Alternatives

Reformer Electrolyzer Purifier (REP) concept of FuelCell Energy
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