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Earth Energy Balance
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Solar Radiation

Earth Radiation, Eer (to space)
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DEearth = Es – Esr - Eer



 National Fuel Cell Research Center 2017
3/25

Earth Energy Resources

Primary Energy:  All Comes from the Sun

Courtesy: BMW Group, 2000

“Energy sustainability 
requires conversion of 
resources at the same rate 
at which they are naturally 
replenished on earth 
without externalities”
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Earth Energy Resources

Primary Energy:  All Comes from the Sun

Courtesy: BMW Group, 2000

“Energy sustainability 
requires conversion of 
resources at the same rate 
at which they are naturally 
replenished on earth 
without externalities”

physics.ucsd.edu, 2016

Fossil Fuels
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Cost of Solar Power

• Good News! Solar PV costs are dramatically falling

www.solarchoice.net.au



 National Fuel Cell Research Center 2017
6/25

Cost of Solar/Wind Power

• Solar Cost Considerations
– ~20 % capacity factor – effectively 

5-times the cost/kWh

– At $1-$2/W → $5,000-$10,000/kW 
for equivalent continuous generator

• Location Considerations
– Need significant transmission

and distribution infrastructure

– Cost, aesthetics, legal

NREL, 2008
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Dynamics of Solar, Wind and other Renewables

• Solar most regular,
predictable and widely
available

• Wind is more dynamic,
somewhat complements
solar

• Together these will eventually
meet almost all demands

• Must be balanced with loads
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Energy Storage Need

Gedankenexperiment – consider a completely solar world

• Do as much conservation & efficiency as possible
– How much storage is needed?

[Key World Statistics, IEA, 2015]

• Batteries needed, but, 
cannot do it all!
– Massive cost 

(connected power & 
energy scaling)

– Self discharge
(measured performance
in utility applications)

World Total (Mtoe) kWh/toe kWh TWh

9,301 11,630 1.082E+14 108,171 

Total Storage Needed Daily shifting only: 237 

Seasonal shifting: 28,846 

[SGIP 2014-15 Impacts Eval., Itron, 2016]
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Electrolysis – A Flexible Load

• Electrolyzers (PEM, alkaline) produce hydrogen & oxygen from water

• Provide load when wind or solar would otherwise be curtailed

• Fast response allows for use with variable input (<2 sec)

• Fast response can provide other ancillary services (e.g., regulation, 
Volt/VAR support)

• Sizes range from 10’s of KW to several MW (today)
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Hydrogen Energy Storage – CHBC White Paper

• HES Better for long-term energy storage
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Hydrogen Energy Storage Dynamics

Oct. 2 Oct. 3 Oct. 4 Oct. 5 Oct. 6 Oct. 7 Oct. 8

• Load shifting from high wind days to low wind days

• Hydrogen stored in adjacent salt cavern

Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

• Compressed Hydrogen Storage complements Wind & Power 
Demand Dynamics in Texas
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Hydrogen Energy Storage Dynamics

• Weekly storage and seasonal storage possible with hydrogen and 
fuel cells/electrolyzers – all zero emissions!

Weekly Seasonal

30

45

60

75

90

105

120

135

150

165

P
re

s
s
u
re

 (
B

a
r)

 

 

Maximum Pressure

Minimum Pressure

280

290

300

310

320

330

340

350

360

370

T
e
m

p
e
ra

tu
re

 (
K

)

Pressure

Temperature
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Maton, J.P., Zhao, L., Brouwer, J., Int’l Journal of 
Hydrogen Energy, Vol. 38, pp. 7867-7880, 2013

But what can we do if we don’t have a salt cavern?



 National Fuel Cell Research Center 2017
13/25

“Natural” Storage & Transmission/Distribution Resource

• Natural Gas Transmission, Distribution & Storage System
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

• Hydrogen production dynamics (with and without clouds)
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P2G Accomplishment: Hydrogen Pipeline Injection

H2 injection into existing natural gas infrastructure (low pressure)

• NG, H2/NG mixtures, H2 leak at same rate
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P2G Accomplishment: Hydrogen Leakage Assessment

H2 and H2/NG mixture leakage rates

• Test apparatus with fixed small orifice
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P2G Accomplishment: Leak Mitigation Evaluation

H2 injection into existing natural gas infrastructure (low pressure)

• Copper epoxy applied (Ace Duraflow®)

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2

P
re

ss
u
re

 (
in

H
2
O

)

Day of Test

H2 10% NG H2 - Original NG - Original 10% H2 - Original

Original

After application



 National Fuel Cell Research Center 2017
19/25

P2G Accomplishment: Electrolysis Alternatives 

Solid Oxide Electrolysis and Co-Electrolysis

• Comparison to PEMFC (lower activation losses, higher ohmic losses)
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P2G Accomplishment: Pipeline Materials Impacts

Simulation of H2 embrittlement and fatigue crack growth with UIUC

• Fatigue crack growth in 6” SoCalGas pipeline
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35.31%
Renewable Energy 

Integration!

P2G Accomplishment: UCI Microgrid Simulation

• P2G could significantly increase renewable percentage at UCI
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Edison 
MacArthur 
Substation

66kV

P2G Accomplishment: Large Electrolyzer Deployment

Thermal Storage
4,500,000 Gal

60,000 Ton-Hour
Central Plant:

8 chillers
Gas turbine: 13.5 MW

Steam turbine: 5.5 MW

APEP/NFCRC
6kW Electrolyzer

First H2 Pipeline Injection

Small Electrolyzer

Large Electrolyzer
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P2G Accomplishment: Large Scale Electrolyzer

Injection and combustion of H2/NG mixture in NGCC (400 psi line)
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P2G Accomplishment: Large Scale Electrolyzer

Injection and combustion of H2/NG mixture in NGCC (400 psi line)

• ~0.24 volume % H2 in natural gas
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Power-to-Gas Economics

• Producing hydrogen from otherwise curtailed renewable power is 
economically attractive
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Power-to-Gas Economics – Various Pathways

Levelized Cost of Returned Energy (LCORE)
• Future Costs & Efficiencies
• 50% capacity factor for all equipment

Electrolyzer

Battery 
Energy 
Storage

Legacy NGCC

$5.60/GJ ~ $10.36/GJ
$5.90/MMBtu ~ $10.90/MMBtu

$10.83/GJ ~ $19.18/GJ
$11.40/MMBtu ~ $20.19/MMBtu

$59.37/GJ ~ $924.32/GJ
$8.38/kg H2 ~ $130.51/kg H2

$57.21/GJ ~ $109.88/GJ
$205.48/MWh ~ $394.62/MWh

$14.14/GJ ~ $41.68/GJ
$50.80/MWh ~ $149.69/MWh $21.44/GJ ~ $59.80/GJ

$76.99/MWh ~ $214.77/MWh
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SoCalGas P2G Support & Collaboration @ UC Irvine

Major Actions and Accomplishments in 2015-16

1. Lab-scale H2 production dynamics by direct-DC & AC PV electrolysis

2. Hydrogen injection into existing natural gas distribution system 
infrastructure – leakage assessment

3. Evaluation of one customer-side leakage mitigation strategy

4. Evaluated alternative electrolysis technologies (PEME, SOE, REP)

5. Collaboration with SoCalGas to evaluate hydrogen and hydrogen 
blend leakage rates

6. Simulation of pipeline materials impacts (embrittlement, fatigue)

7. Simulation of P2G impacts in
grid and microgrid

8. Full-scale hydrogen production
& injection into 400 psi line

9. Combustion of P2G gas in NGCC

10. Economic analyses
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

• Performs best when hot (summer vs. winter)
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P2G Accomplishment: Detailed Economic Analyses

Levelized Cost of Returned Energy (LCORE)
• Future Costs & Efficiencies
• 50% capacity factor for all equipment
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P2G Accomplishment: 
Detailed Economic Analyses

Levelized Cost of Returned Energy 
(LCORE)

Pathways compared here:
• Electr. + Fuel Cell + Electricity to eGrid

• Electrolyzer + H2 to gas grid

• Electr. + Methanator +  NG to gas grid

• Battery ES + Electricity to eGrid
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

• HOGEN-RE proton exchange membrane electrolyzer

• Installed, connected, evaluated with PV direct-DC and 220V AC

• Sunny and cloudy days

• Overall performance
– Efficiency in various

operating modes

– BoP losses

– DC vs. AC

– Dynamics

• Hydrogen uses
(1) vented
(2) stored
(3) pipeline injected
(4) end-use consumed
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P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

• Balance of Plant loss dynamics (direct-PV mode)
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P2G Accomplishment: Electrolysis Alternatives 

Reformer Electrolyzer Purifier (REP) concept of FuelCell Energy



 National Fuel Cell Research Center 2017
36/25

P2G Accomplishment: Electrolysis Alternatives 

Reformer Electrolyzer Purifier (REP) concept of FuelCell Energy


