California Fuel Cell Partnership

Charlie Freese Chairman, H2USA Operational Steering Committee Executive Director, Global Fuel Cell Business

H2USA GENERAL MOTORS

Cooperation & Coordination H₂USA

Public – Private Collaboration

Focused on facilitating roll-out of supporting infrastructure

- High-level Goals:
 - Establish Necessary H₂ Infrastructure
 - Leverage Multiple Energy Sources
 - Including natural gas & renewables
 - Support FCEV Deployment within USA
- Expected Benefits:
 - Improve US Energy & Economic Security
 - Develop Domestic Resources & Create US Jobs
 - Validate New Technologies
 - Strong Clean Energy Domestic Supply Base
 - Substantially Reduced Greenhouse Gas Emissions

Cooperation & Coordination H₂USA

Coordinated by Operational Steering Committee

- Four Primary Working Groups
 - Locations Roadmap
 - Identify & Prioritize Infrastructure Market Opportunities
 - Address Regulatory Roadblocks (zoning)
 - Define Timing Requirements
 - Hydrogen Fuel Station
 - Coordination with H₂FIRST
 - Address Requirements for Dispensing Technologies
 - Financing Infrastructure
 - Establish Financing Business Models
 - Market Support & Acceleration
 - Define Product Launch Timelines
 - Conduct Studies to Address Requirements
 - Coordinate non-vehicle Codes & Standards
 - Support Public Education

U.S. Infrastructure

Concentration in Two Regions (California & Northe

IN OPERATION
PLANNED
OUT OF OPERATION

Guiding H₂ Infrastructure Deployment

Key Questions to Consider

- What Propulsion System is Required?
- Why Fuel Cells?
- Why Hydrogen?
- Why is it Taking So Long?
- Why Can't I Have a Station Too?
- How can this be Achieved?
- Roles for Collaboration, H2USA

Successful Infrastructure Roll-Out & Collaboration Must Comprehend Above

Guiding H₂ Infrastructure Deployment

- What Propulsion System is Required? Require BOTH Batteries AND Fuel Cells
- Why Fuel Cells? The Fast Charging Electric Vehicle
 - Better Solution for Specific Customers Requirements
 - Unique Capability & Scalable
- Why Hydrogen? The Universal Energy Translator
 - Energy Carrier
 - Energy Storage Mechanism
- Why is it Taking So Long? Progress is Substantial
 - We are only beginning
 - Always Challenging to Manage Expectations
- Why Can't I Have a Station Too? Be Careful what you ask for
 - Diluting concentrated station deployment strategy adds risk
- How can this be Achieved? Sustainable Incremental Solutions
 - New Business Models Required
 - Cross-Industry, Public-Private Collaboration Required (Energy & Utility Sectors) Broad Stakeholders
- Roles for Collaboration

Successful Infrastructure Roll-Out Must Comprehend Above

Technology Application Map Where do Hydrogen Fuel Cells Fit?

No Single Technology Solves Portfolio Needs Alone

Battery & Fuel Cell Technology - Both have roles to play within Propulsion Portfolio

Broad Opportunities for Hydrogen

AUTONOMOUS AERIAL VEHICLES • AIRCRAFT SYSTEMS • AIRCRAFT GROUND SUPPORT EQUIPMENT

ELECTRIC VEHICLES • STATIONARY POWER • MICROGRID • ROBOTICS

FUTURE HYDROGEN AT SCALE "ENERGY ECOSYSTEM"

Source: Pivovar, <u>Hydrogen at Scale</u> NREL

SOLAR VOLTAIC RENEWABLE ENERGY (SPRING)

Simulated dispatch in California for a spring day with PV penetration from 0-10%

Even at low penetrations, instantaneous demand can be met by solar power

Source: Pivovar, Hydrogen at Scale NREL

Summary

- Must recognize that BEV and Fuel Cell Vehicles are both required NOT an "OR" Discussion
- Use Fuel Cells Where the Make Sense Support Infrastructure Investments that make this possible
- H₂ The Universal Energy Translator It must be Included with Grid Modernization Opportunities
 - Energy Carrier
 - Energy Storage Mechanism
- Under-Promise and Over-Deliver
- Do Not Dilute Station Investments to Point that Scale is Lost
 - California First with ZEV State Fast Followers (North East States)
- Support Work Across Multiple Swim Lanes with Broad Stakeholder Groups
 - New Business Models Required
 - Cross-Industry, Public-Private Collaboration Required (Including Energy & Utility Sectors)
 - Standardized Infrastructure Hardware
- Roles for Collaboration, H2USA Support above strategies, Broaden Stakeholder Participation

Thank You

Refueling Time

Hydrogen Fuel Cell Technology Enables the Fast Charging

Energy Source	Rate (miles/min)	Long-Trip % Charging Time
Gasoline	150	1-2%
Hydrogen	100	<2%
EV Supercharger	6	15%

Fuel cell vehicles have similar functionality to current Internal Combustion Engines Battery charging rates (mile/min) limited to about an order of magnitude less than H₂ refueling rates

Assumptions: Gasoline & Hydrogen Electric: 350 mile range, Battery Electric: 250 mile range