DAIMLER

Current Status GLC F-CELL and H2Mobility

Prof. Dr. Christian Mohrdieck

Build up a H2-infrastructre network until 2023 in Germany

SIX COMPANIES AND FIVE ASSOCIATED PART-NERS FROM THE AUTOMOBILE, GAS AND OIL SECTORS JOINED FORCES TO FOUND H₂ MOBILITY. THEIR COMMON GOAL? TO PUT IN PLACE THE INFRASTRUCTURE TO GUARANTEE NATIONWIDE HYDROGEN-POWERED MOBILITY IN GERMANY.

Build up a H2-infrastructre network until 2023 in Germany

* By 04/2017 there are 33 HRS are completed, 22 HRS are under construction

H2-Mobility

Applied HRS Technologies

HRS Performance Specification

At its refuelling stations H_2 MOBILITY uses the most modern and efficient technologies currently available on the market. For successful hydrogen mobility a high degree of standardisation and reliability are essential, as is keeping capital expenditure and operating costs as low as possible.

In 2015 the first HRS were ordered from the manufacturers Air Liquide, Linde and H2Logic.

700 bar hydrogen refuelling station standardisation // In order to ensure uniform standards and to facilitate procurement, H₂ MOBILITY has drawn up a functional description of standardised HRS. It gives an overview of the required performance in terms of quantity and quality and lays out the regulations to adopt. It distinguishes between four different sizes of hydrogen refuelling stations: very small, small, medium and large. The general performance specifications of the different refuelling station sizes are given in Table 1.

	VERY SMALL HRS	SMALL HRS	MEDIUM HRS	LARGE HRS
Number of refuelling positions	1	1	2	4
Number of vehicles that can be refuelled per hour per position	2,5	6	6	10
Number of vehicles that can be refuelled back to back per refuelling position	0	1	1	10
Max. waiting time to refuel consecutive cars (in min.)	20	5	5	n/a
Number of consecutive hours to meet the performance specifications		3	3	24/7
Average number of vehicles refuelled per day	10	30	60	125
Maximum number of vehicles refuelled per day	20	38	75	180
Maximum hydrogen hourly throughput (in kg)	18	33.6	67.2	224
Average hydrogen throughput per day (in kg)	56	168	336	700
Maximum hydrogen throughput per day (in kg)	80	212	420	1000
Number of vehicles served per station (approx.)	100	400	800	1600

Example of a small hydrogen refueling station layout

Filling process // Filling process: The filling process to adopt is laid out in the international standard SAE J2601-2014 . Vehicle tanks with a capacity of 1-7kg of hydrogen at a pressure of 700 bar have been taken as the design baseline.

 Modular design // The hydrogen refuelling stations

 are described in terms of functional modules:

 Module 1
 On-site hydrogen storage system

 Module 2
 Hydrogen compression system

 Module 3
 High pressure buffer storage

 Module 4
 Hydrogen pre-cooling unit

 Module 5
 Dispensing system

Starting 2017: Mercedes-Benz GLC F-CELL With plug-in technolgy

DAIMLER: Next Generation Fuel-Cell System

Huge technological progress

2010: Underfloor package

2017: Compartment package

30% reduction fuel cell engine size
90% reduction of Platinum
30% higher electric range in future vehicles
40% higher system performance

DAIMLER: Next Generation Fuel-Cell System GLC F-CELL Facts

Thank You for Your Attention!

F-CELL PLUG-IN

F-CELL