Generally, automakers of cars, buses and trucks aim for a fuel cell stack (aka the power plant) lifetime that matches the longevity of a typical vehicle engine in that category.
For example, many automakers of passenger cars aim for a fuel cell stack lifespan of at least 5,000 hours or approximately 150,000-200,000 miles. In the heavy-duty category, many bus fuel cell stacks (power plant) have reached lifetimes of 20,000 hours and more, with a goal of 30,000 hours by 2030. We anticipate trucks’ fuel cell power plants will perform in a similar manner.
Here in California and around the world, hydrogen is on a renewable pathway. Like the electrical grid, hydrogen will likely achieve renewable content by milestones established by law and regulation. Currently, all publicly funded hydrogen stations must dispense hydrogen fuel with at least a renewable content of 33 percent. It should be noted that this requirement must be met by renewable resources in excess of those already being placed on the electric grid. Once the network dispenses more than 3.5 million kilograms in one year (projected to happen in the near future), the requirement also applies to stations that do not receive public funds.With the new capacity credit in the Low Carbon Fuel Standard, qualifying stations must comply with a 40 percent renewable content. Many of the stations in California's network already have a renewable content of up to 100%. California stakeholders are currently working on legislative language to put hydrogen on the path to 100 percent renewable and zero-carbon content, similar to what was done with the electrical grid.
The Honda Clarity fuel cell offers an EPA estimated range of 366 miles. A Hyundai NEXO, 380 miles. The first-generation Toyota gets 312 miles, and the second-generation Mirai, 400 miles. Of course, mileage varies based on driver performance.